Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
T
tuia-alg-engineering-py
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
mengxiangxuan
tuia-alg-engineering-py
Commits
18dbee01
Commit
18dbee01
authored
Oct 22, 2018
by
mxx
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
1
parent
e7b2c71b
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
187 additions
and
66 deletions
+187
-66
misc.xml
.idea/misc.xml
+1
-1
tuia-alg-engineering-py.iml
.idea/tuia-alg-engineering-py.iml
+1
-1
candidate_set.py
auto-spread/auto_manage/candidate_set.py
+147
-63
params.py
auto-spread/auto_manage/params.py
+37
-0
samples_create.py
auto-spread/auto_manage/samples_create.py
+1
-1
No files found.
.idea/misc.xml
View file @
18dbee01
<?xml version="1.0" encoding="UTF-8"?>
<project
version=
"4"
>
<component
name=
"ProjectRootManager"
version=
"2"
project-jdk-name=
"Python 3.5.2 (D:\Program Files\
A
naconda3\python.exe)"
project-jdk-type=
"Python SDK"
/>
<component
name=
"ProjectRootManager"
version=
"2"
project-jdk-name=
"Python 3.5.2 (D:\Program Files\
a
naconda3\python.exe)"
project-jdk-type=
"Python SDK"
/>
</project>
\ No newline at end of file
.idea/tuia-alg-engineering-py.iml
View file @
18dbee01
...
...
@@ -2,7 +2,7 @@
<module
type=
"PYTHON_MODULE"
version=
"4"
>
<component
name=
"NewModuleRootManager"
>
<content
url=
"file://$MODULE_DIR$"
/>
<orderEntry
type=
"
inheritedJdk
"
/>
<orderEntry
type=
"
jdk"
jdkName=
"Python 3.5.2 (D:\Program Files\anaconda3\python.exe)"
jdkType=
"Python SDK
"
/>
<orderEntry
type=
"sourceFolder"
forTests=
"false"
/>
</component>
</module>
\ No newline at end of file
auto-spread/auto_manage/candidate_set.py
View file @
18dbee01
...
...
@@ -8,7 +8,7 @@ import redis
import
datetime
import
time
#注意:目前只有测试的广告上传redis
os
.
chdir
(
'/home/db_dlp/mengxiangxuan/auto_spread'
)
cursor
=
hive
.
connect
(
host
=
'10.50.10.11'
,
port
=
10000
,
username
=
'mengxiangxuan'
,
database
=
'default'
)
.
cursor
()
now
=
datetime
.
datetime
.
now
()
...
...
@@ -30,7 +30,7 @@ yestoday15 = (now - delta15).strftime('%Y-%m-%d')
# 历史无数据---------------------------------------------------
# 解出广告位-广告维度预估cvr
nolunch_pre_cvr
=
pd
.
read_table
(
r'slot_ad_
stat_
cvr.txt'
)
nolunch_pre_cvr
=
pd
.
read_table
(
r'slot_ad_cvr.txt'
)
nolunch_pre_cvr
.
columns
=
[
'c'
]
a
=
nolunch_pre_cvr
[
'c'
]
.
map
(
lambda
x
:
x
.
replace
(
'{'
,
''
)
.
replace
(
'}'
,
''
)
.
split
(
' '
))
# a=nolunch_pre_cvr['c'].map(lambda x:x.replace('=',':'))
...
...
@@ -204,72 +204,156 @@ pre_slotad_cvr_good.to_csv('pre_slotad_cvr_good.csv', index=False)
###########################################################################################
##--------------------------------------------------------------------------------------
###----广告粒度历史数据
sql_ad
=
'''
select a.app_id,a.slot_id,a.advert_id,
a.stat_cvr,
b.pre_cvr/a.stat_cvr as bias,
case when act_click_cnt>0 then act_click_cnt/5
when act_click_cnt=0 then cost/(c.afee*5) end confidence,
a.cost,
a.act_click_cnt,
a.launch_cnt,
c.afee,
cpc_fee
#广告高中低出价预测发券 统计cvr, bias
sql_ad_fee0
=
'''
select app_id,slotid,advert_id,
sum(charge_fees) cost,
sum(charge_fees)/sum(act_click_cnt) costconvert,
sum(act_click_cnt)/sum(charge_cnt) stat_cvr,
avg(pre_cvr) pre_cvr,
avg(pre_cvr)/(sum(act_click_cnt)/sum(charge_cnt)) bias ,
avg(b.fee0) fee0
from
(select
app_id,slot_id,advert_id,
sum(ad_consume) cost,
sum(effect_pv) act_click_cnt,
sum(effect_pv)/sum(tuia_consumer_count) stat_cvr,
count(1) launch_cnt
from advert.dws_advert_effect_analyse_di
where dt>='{0}' and dt<='{1}'
group by app_id,slot_id,advert_id) a
(select * from advert.dws_advert_order_wide_v4_level_3_di where dt>='{0}' and dt<='{1}') a
left outer join
(select app_id,slot_id,
advert_id,avg(pre_cvr) pre_cvr,avg(fee) cpc_fee
from (
select app_id,slot_id, advert_id,package_id,
pre_cvr,
case when charge_type=1 then fee else 0 end fee
from logs.dwd_nezha_result_log_di
where dt='{1}' ) m
group by app_id,slot_id,advert_id) b
on a.app_id=b.app_id and a.slot_id=b.slot_id and a.advert_id=b.advert_id
(select advert_id,percentile(fee,0.33) fee0
from advert.dws_advert_order_wide_v4_level_3_di
where dt>='{0}' and dt<='{1}' and fee>0
group by advert_id) b
on a.advert_id=b.advert_id
where a.fee<b.fee0 and a.slotid is not null
group by app_id,slotid,a.advert_id
'''
.
format
(
yestoday15
,
yestoday1
)
sql_ad_fee1
=
'''
select app_id,slotid,advert_id,
sum(charge_fees) cost,
sum(charge_fees)/sum(act_click_cnt) costconvert,
sum(act_click_cnt)/sum(charge_cnt) stat_cvr,
avg(pre_cvr) pre_cvr,
avg(pre_cvr)/(sum(act_click_cnt)/sum(charge_cnt)) bias,
avg(b.fee1) fee1
from
(select * from advert.dws_advert_order_wide_v4_level_3_di where dt>='{0}' and dt<='{1}') a
left outer join
(select advert_id,percentile(fee,0.66) fee1
from advert.dws_advert_order_wide_v4_level_3_di
where dt>='{0}' and dt<='{1}' and fee>0
group by advert_id) b
on a.advert_id=b.advert_id
where a.fee<b.fee1 and a.slotid is not null
group by app_id,slotid,a.advert_id
'''
.
format
(
yestoday15
,
yestoday1
)
sql_ad_fee2
=
'''select app_id,slotid,advert_id,
sum(charge_fees) cost,
sum(charge_fees)/sum(act_click_cnt) costconvert,
sum(act_click_cnt)/sum(charge_cnt) stat_cvr,
avg(pre_cvr) pre_cvr,
avg(pre_cvr)/(sum(act_click_cnt)/sum(charge_cnt)) bias
from advert.dws_advert_order_wide_v4_level_3_di
where dt>='{0}' and dt<='{1}' and slotid is not null
group by app_id,slotid,advert_id
'''
.
format
(
yestoday15
,
yestoday1
)
(select
advert_id,
sum(ad_consume)/sum(effect_pv) afee
from advert.dws_advert_effect_analyse_di
where dt='{1}'
group by advert_id) c
on a.advert_id=c.advert_id'''
.
format
(
yestoday15
,
yestoday1
)
cursor
.
execute
(
sql_ad
)
stat_slotad_cvr
=
pd
.
DataFrame
(
cursor
.
fetchall
())
stat_slotad_cvr
.
columns
=
[
'app_id'
,
'slotid'
,
'advert_id'
,
'cvr'
,
'bias'
,
'confidence'
,
'cost'
,
'act_click_cnt'
,
'launch_cnt'
,
'afee'
,
'cpc_fee'
]
stat_slotad_cvr
[
'confidence'
][
stat_slotad_cvr
[
'confidence'
]
>
1
]
=
1
stat_slotad_cvr
[
'costconvert'
]
=
stat_slotad_cvr
[
'cost'
]
/
stat_slotad_cvr
[
'act_click_cnt'
]
stat_slotad_cvr
[
'costconvert_bias'
]
=
stat_slotad_cvr
[
'costconvert'
]
/
stat_slotad_cvr
[
'afee'
]
stat_slotad_cvr
[
'cpc_target_cvr'
]
=
stat_slotad_cvr
[
'cpc_fee'
]
/
stat_slotad_cvr
[
'afee'
]
sql_ad_costconvert
=
'''select advert_id,
sum(charge_fees)/sum(act_click_cnt) ad_costconvert
from advert.dws_advert_order_wide_v4_level_3_di
where dt>='{0}' and dt<='{1}'
group by advert_id
'''
.
format
(
yestoday15
,
yestoday1
)
cursor
.
execute
(
sql_ad_fee0
)
stat_slotad_cvr_fee0
=
pd
.
DataFrame
(
cursor
.
fetchall
())
stat_slotad_cvr_fee0
.
columns
=
[
'app_id'
,
'slotid'
,
'advert_id'
,
'cost0'
,
'costconvert0'
,
'stat_cvr0'
,
'pre_cvr0'
,
'bias0'
,
'fee0'
]
stat_slotad_cvr_fee0
=
stat_slotad_cvr_fee0
.
ix
[
stat_slotad_cvr_fee0
[
'cost0'
]
>
0
]
cursor
.
execute
(
sql_ad_fee1
)
stat_slotad_cvr_fee1
=
pd
.
DataFrame
(
cursor
.
fetchall
())
stat_slotad_cvr_fee1
.
columns
=
[
'app_id'
,
'slotid'
,
'advert_id'
,
'cost1'
,
'costconvert1'
,
'stat_cvr1'
,
'pre_cvr1'
,
'bias1'
,
'fee1'
]
stat_slotad_cvr_fee1
=
stat_slotad_cvr_fee1
.
ix
[
stat_slotad_cvr_fee1
[
'cost1'
]
>
0
]
cursor
.
execute
(
sql_ad_fee2
)
stat_slotad_cvr_fee2
=
pd
.
DataFrame
(
cursor
.
fetchall
())
stat_slotad_cvr_fee2
.
columns
=
[
'app_id'
,
'slotid'
,
'advert_id'
,
'cost2'
,
'costconvert2'
,
'stat_cvr2'
,
'pre_cvr2'
,
'bias2'
]
stat_slotad_cvr_fee2
=
stat_slotad_cvr_fee2
.
ix
[
stat_slotad_cvr_fee2
[
'cost2'
]
>
0
]
cursor
.
execute
(
sql_ad_costconvert
)
ad_costconvert
=
pd
.
DataFrame
(
cursor
.
fetchall
())
ad_costconvert
.
columns
=
[
'advert_id'
,
'ad_costconvert'
]
stat_slotad_cvr_fee21
=
pd
.
merge
(
stat_slotad_cvr_fee2
,
stat_slotad_cvr_fee1
,
how
=
'left'
,
on
=
[
'app_id'
,
'slotid'
,
'advert_id'
])
stat_slotad_cvr_fee210
=
pd
.
merge
(
stat_slotad_cvr_fee21
,
stat_slotad_cvr_fee0
,
how
=
'left'
,
on
=
[
'app_id'
,
'slotid'
,
'advert_id'
])
stat_slotad_cvr
=
pd
.
merge
(
stat_slotad_cvr_fee210
,
ad_costconvert
,
how
=
'left'
,
on
=
[
'advert_id'
])
stat_slotad_cvr
=
stat_slotad_cvr
.
ix
[
pd
.
notnull
(
stat_slotad_cvr
[
'ad_costconvert'
])]
stat_slotad_cvr
[
'confidence0'
]
=
stat_slotad_cvr
[
'cost0'
]
/
(
stat_slotad_cvr
[
'ad_costconvert'
]
*
5
)
stat_slotad_cvr
[
'confidence1'
]
=
stat_slotad_cvr
[
'cost1'
]
/
(
stat_slotad_cvr
[
'ad_costconvert'
]
*
5
)
stat_slotad_cvr
[
'confidence2'
]
=
stat_slotad_cvr
[
'cost2'
]
/
(
stat_slotad_cvr
[
'ad_costconvert'
]
*
5
)
stat_slotad_cvr
.
ix
[
stat_slotad_cvr
[
'confidence0'
]
>
1
,
'confidence0'
]
=
1
stat_slotad_cvr
.
ix
[
stat_slotad_cvr
[
'confidence1'
]
>
1
,
'confidence1'
]
=
1
stat_slotad_cvr
.
ix
[
stat_slotad_cvr
[
'confidence2'
]
>
1
,
'confidence2'
]
=
1
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence2'
]
>=
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr2'
])),
'stat_cvr2'
]
=
0
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence2'
]
<
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr2'
])),
'stat_cvr2'
]
=
\
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence2'
]
<
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr2'
])),
'pre_cvr2'
]
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence1'
]
>=
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr1'
])),
'stat_cvr1'
]
=
0
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence1'
]
<
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr1'
])),
'stat_cvr1'
]
=
\
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence1'
]
<
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr1'
])),
'pre_cvr1'
]
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence0'
]
>=
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr0'
])),
'stat_cvr0'
]
=
0
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence0'
]
<
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr0'
])),
'stat_cvr0'
]
=
\
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'confidence0'
]
<
0.2
)
&
(
pd
.
isnull
(
stat_slotad_cvr
[
'stat_cvr0'
])),
'pre_cvr0'
]
stat_slotad_cvr
[[
'stat_cvr0'
,
'stat_cvr1'
,
'stat_cvr2'
]]
=
stat_slotad_cvr
[[
'stat_cvr0'
,
'stat_cvr1'
,
'stat_cvr2'
]]
.
fillna
(
value
=
0
)
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'stat_cvr2'
]
==
0
)
&
pd
.
isnull
(
stat_slotad_cvr
[
'bias2'
]),
'bias2'
]
=
5.0
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'stat_cvr2'
]
!=
0
)
&
pd
.
isnull
(
stat_slotad_cvr
[
'bias2'
]),
'bias2'
]
=
1.5
stat_slotad_cvr
[[
'bias0'
,
'bias1'
]]
=
stat_slotad_cvr
[[
'bias0'
,
'bias1'
]]
.
fillna
(
value
=
5.0
)
stat_slotad_cvr
[
'confidence0'
]
=
stat_slotad_cvr
[
'confidence0'
]
.
fillna
(
value
=
0
)
.
round
(
2
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'confidence1'
]
=
stat_slotad_cvr
[
'confidence1'
]
.
fillna
(
value
=
0
)
.
round
(
2
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'confidence2'
]
=
stat_slotad_cvr
[
'confidence2'
]
.
fillna
(
value
=
0
)
.
round
(
2
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'confidenceSet'
]
=
stat_slotad_cvr
[
'confidence0'
]
+
','
+
stat_slotad_cvr
[
'confidence1'
]
+
','
+
stat_slotad_cvr
[
'confidence2'
]
stat_slotad_cvr
[
'confidenceSet'
]
=
stat_slotad_cvr
[
'confidenceSet'
]
.
map
(
lambda
x
:
x
.
split
(
','
))
stat_slotad_cvr
[
'stat_cvr0'
]
=
stat_slotad_cvr
[
'stat_cvr0'
]
.
fillna
(
value
=
0
)
.
round
(
6
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'stat_cvr1'
]
=
stat_slotad_cvr
[
'stat_cvr1'
]
.
fillna
(
value
=
0
)
.
round
(
6
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'stat_cvr2'
]
=
stat_slotad_cvr
[
'stat_cvr2'
]
.
fillna
(
value
=
0
)
.
round
(
6
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'cvrSet'
]
=
stat_slotad_cvr
[
'stat_cvr0'
]
+
','
+
stat_slotad_cvr
[
'stat_cvr1'
]
+
','
+
stat_slotad_cvr
[
'stat_cvr2'
]
stat_slotad_cvr
[
'cvrSet'
]
=
stat_slotad_cvr
[
'cvrSet'
]
.
map
(
lambda
x
:
x
.
split
(
','
))
stat_slotad_cvr
[
'bias0'
]
=
stat_slotad_cvr
[
'bias0'
]
.
fillna
(
value
=
5.0
)
.
round
(
6
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'bias1'
]
=
stat_slotad_cvr
[
'bias1'
]
.
fillna
(
value
=
5.0
)
.
round
(
6
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'bias2'
]
=
stat_slotad_cvr
[
'bias2'
]
.
fillna
(
value
=
5.0
)
.
round
(
6
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'biasSet'
]
=
stat_slotad_cvr
[
'bias0'
]
+
','
+
stat_slotad_cvr
[
'bias1'
]
+
','
+
stat_slotad_cvr
[
'bias2'
]
stat_slotad_cvr
[
'biasSet'
]
=
stat_slotad_cvr
[
'biasSet'
]
.
map
(
lambda
x
:
x
.
split
(
','
))
stat_slotad_cvr
[
'fee0'
]
=
stat_slotad_cvr
[
'fee0'
]
.
fillna
(
value
=
9999.0
)
.
round
(
1
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'fee1'
]
=
stat_slotad_cvr
[
'fee1'
]
.
fillna
(
value
=
9999.0
)
.
round
(
1
)
.
astype
(
'str'
)
stat_slotad_cvr
[
'priceSection'
]
=
stat_slotad_cvr
[
'fee0'
]
+
','
+
stat_slotad_cvr
[
'fee1'
]
stat_slotad_cvr
[
'priceSection'
]
=
stat_slotad_cvr
[
'priceSection'
]
.
map
(
lambda
x
:
x
.
split
(
','
))
#选广告位
stat_slotad_cvr_good
=
stat_slotad_cvr
.
ix
[(
stat_slotad_cvr
[
'costconvert_bias'
]
<=
1.5
)
&
(
stat_slotad_cvr
[
'cvr'
]
>=
0.01
)
&
(
stat_slotad_cvr
[
'confidence'
]
>=
0.1
)]
stat_slotad_cvr_good
=
stat_slotad_cvr_good
[[
'slotid'
,
'advert_id'
,
'cvr'
,
'bias'
,
'confidence'
]]
stat_slotad_cvr_good
=
stat_slotad_cvr
[[
'slotid'
,
'advert_id'
,
'cvrSet'
,
'biasSet'
,
'confidenceSet'
,
'priceSection'
]]
stat_slotad_cvr_good
[[
'slotid'
,
'advert_id'
]]
=
stat_slotad_cvr_good
[[
'slotid'
,
'advert_id'
]]
.
astype
(
'str'
)
stat_slotad_cvr_good
[
'key'
]
=
"NZ_K76_"
+
stat_slotad_cvr_good
[
'slotid'
]
+
"_"
+
stat_slotad_cvr_good
[
'advert_id'
]
stat_slotad_cvr_good
[
'value'
]
=
stat_slotad_cvr_good
[[
'cvr'
,
'bias'
,
'confidence
'
]]
.
apply
(
lambda
x
:
x
.
to_json
(
orient
=
'index'
),
axis
=
1
)
stat_slotad_cvr_good
[
'key'
]
=
"NZ_K
0
76_"
+
stat_slotad_cvr_good
[
'slotid'
]
+
"_"
+
stat_slotad_cvr_good
[
'advert_id'
]
stat_slotad_cvr_good
[
'value'
]
=
stat_slotad_cvr_good
[[
'cvrSet'
,
'biasSet'
,
'confidenceSet'
,
'priceSection
'
]]
.
apply
(
lambda
x
:
x
.
to_json
(
orient
=
'index'
),
axis
=
1
)
stat_slotad_cvr_good
.
index
=
range
(
stat_slotad_cvr_good
.
shape
[
0
])
stat_slotad_cvr_good
[
'bias'
]
=
stat_slotad_cvr_good
[
'bias'
]
.
fillna
(
value
=
1.4
)
# 连接nezha-redis
pool
=
redis
.
ConnectionPool
(
host
=
'r-bp18da0abeaddc94285.redis.rds.aliyuncs.com'
,
...
...
@@ -280,9 +364,9 @@ pipe = r.pipeline(transaction=True)
#先删除昨日候选集
print
(
'stat_slotad_cvr_good-----'
)
stat_slotad_cvr_good_old
=
pd
.
read_csv
(
'stat_slotad_cvr_good.csv'
)
stat_slotad_cvr_good_old
.
to_csv
(
'stat_slotad_cvr_good_old.csv'
,
index
=
False
)
print
(
'stat_slotad_cvr_good
2
-----'
)
stat_slotad_cvr_good_old
=
pd
.
read_csv
(
'stat_slotad_cvr_good
2
.csv'
)
stat_slotad_cvr_good_old
.
to_csv
(
'stat_slotad_cvr_good_old
2
.csv'
,
index
=
False
)
for
i
in
stat_slotad_cvr_good_old
.
index
:
key
=
stat_slotad_cvr_good_old
.
ix
[
i
,
'key'
]
value
=
stat_slotad_cvr_good_old
.
ix
[
i
,
'value'
]
...
...
@@ -305,7 +389,7 @@ for i in stat_slotad_cvr_good.index:
pipe
.
execute
()
stat_slotad_cvr_good
.
to_csv
(
'stat_slotad_cvr_good.csv'
,
index
=
False
)
stat_slotad_cvr_good
.
to_csv
(
'stat_slotad_cvr_good
2
.csv'
,
index
=
False
)
##############################################################################################
###############################################################################################
...
...
auto-spread/auto_manage/params.py
0 → 100644
View file @
18dbee01
import
redis
import
json
params_dict
=
{
#recommend方法
'startFacter'
:
0.5
,
'cpaBiasRatioFacter'
:
1.0
,
'cpaOrientRatioFacter'
:
0.5
,
'cpaBiasThresholdFacter'
:
2.0
,
'cpcTargetRatioFacter'
:
0.5
,
'cpcOrientRatioFacter'
:
0.01
,
'cpcBiasThresholdFacter'
:
1.0
,
#熔断
'fuseOrientCostG1dFacter'
:
50000.0
,
'fuseOrientCostConvertbiasFacter'
:
2.0
,
#白名单参数
'wSlotOrientationConfidenceFacter'
:
0.2
,
'wSlotOrientationCostConvertBiasFacter'
:
1.2
,
#高置信黑名单参数
'bOrientConfidenceFacter1'
:
1.0
,
'bOrientCostConvertbiasFacter1'
:
1.2
,
'bSlotOrientationConfidenceFacter1'
:
0.5
,
'bSlotOrientationCostConvertBiasFacter1'
:
3.5
,
#低置信黑名单参数
'bOrientConfidenceFacter2'
:
1.0
,
'bOrientCostConvertbiasFacter2'
:
1.5
,
'bSlotOrientationConfidenceFacter2'
:
0.5
,
'bSlotOrientRadioFacter2'
:
2.0
,
}
params_key
=
"NZ_K??_auto_manage_params"
params_value
=
json
.
dumps
(
params_dict
)
auto-spread/auto_manage/samples_create.py
View file @
18dbee01
...
...
@@ -105,7 +105,7 @@ sql='''select advert_id,account_id,
when length(match_tag_nums)=22 then substr(match_tag_nums,13)
else match_tag_nums end match_tag_nums,avg(fee) fee
from advert.dws_advert_order_wide_v4_level_6_di
where dt>='{0}' and dt<='{1}' and advert_id is not null
where dt>='{0}' and dt<='{1}' and advert_id is not null
and fee>0
group by advert_id,account_id,
case when length(match_tag_nums)=16 then substr(match_tag_nums,7)
when length(match_tag_nums)=22 then substr(match_tag_nums,13)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment